Lewis Acid Mediated Reactions of Organotransition Metal Complexes. A Marked Promotion of the Sulfur Dioxide Insertion in Alkyl(η^5 -cyclopentadienyl)tricarbonyltungsten(II) by Boron(III) and Antimony(V) Fluorides¹

Roland G. Severson and Andrew Wojcicki*

Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210. Received August 4, 1978

Abstract: The insertion of SO₂ into the W-R bond of η^5 -C₅H₅W(CO)₃R (R = CH₃, 1a; R = CH₂C₆H₅, 1b) in liquid SO₂ is markedly promoted by the Lewis acids BF₃ and SbF₅. Thus, at -26 °C the reaction of 1a with SO₂-BF₃ appears to be at least 20 000 times faster than the reaction of 1a with SO₂ alone. The promoted reaction proceeds to the corresponding Lewis acid stabilized *O*-sulfinato complexes, η^5 -C₅H₅W(CO)₃[OS(OBF₃ or OSbF₅)R] (BF₃: R = CH₃, 3a; R = CH₂C₆H₅, 3b. SbF₅: R = CH₃, 4a; R = CH₂C₆H₅, 4b), which were isolated and characterized by a combination of elemental analysis and infrared and ¹H NMR spectroscopy; by contrast, the insertion of SO₂ alone continues to the *S*-sulfinato complexes, η^5 -C₅H₅W-(CO)₃S(O)₂R (R = CH₃, 2a; R = CH₂C₆H₅, 2b). Treatment of 3a with NH₃, C₆H₅NH₂, or other Lewis bases affords 2a in good yield, whereas storage of 3a in benzene-pentane furnishes some isomeric η^5 -C₅H₅W(CO)₃[S(O)(OBF₃)CH₃] (5a). Complex 5a also results upon treatment of 2a with BF₃ in toluene at 25 °C or in SO₂ at -16 °C; this reaction may be reversed by the application of vacuum. Other similar 1:1 adducts of 2a or 2b and BF₃ or SbF₅ (or F₅SbOSO) were prepared by direct reaction of the appropriate components in SO₂ solution. The promotion of the reaction of the tungsten-alkyl complexes with SO₂ by BF₃ or SbF₅ is thought to derive from a stronger electrophilic character of the Lewis acid-SO₂ adduct than of the SO₂ alone. Mechanistic aspects of the promoted and unpromoted insertion of SO₂ are discussed, and possible extensions of this approach to other reactions at transition metal-carbon σ bonds are considered.

Introduction

One of the important reactions of transition metal-carbon σ bonds is cleavage promoted by electrophilic reagents.²⁻⁸ Such a reaction occurs frequently in catalysis and stoichiometric synthesis; it also finds extensive use in the identification of organometallic compounds.

Transition metal alkyls generally exhibit a wide range of reactivity toward a given electrophile, E-X. This prompted us to explore a chemical means, ideally a catalytic one, of enhancing the reactivity of the more inert complexes. Our approach consisted of the use of a Lewis acid, A, in conjunction with the electrophile. This choice was made on the premise that the acid-base complex E-X→A would be a stronger electrophilic reagent than E-X alone. Although, to the best of our knowledge, such an approach has not yet been employed, reactions of Lewis acids with transition metal complexes have been investigated,⁹⁻¹¹ principally by Shriver and co-workers.^{10,11} The use of Lewis acids to complex a dissociating ligand and thus promote the formation of catalytically active coordinatively unsaturated metal species has also been examined.¹²

In the present study, SO_2 was selected as E-X for initial tests because its reaction with coordinatively saturated transition metal carbonyl alkyl complexes is a reasonably well understood electrophilic cleavage process.¹³ Furthermore, the reactivity of SO₂ varies markedly with the nature of the transition metal-carbon σ bond,¹⁴ and thus offers a considerable choice of alkyl compounds suitable for the investigation in question.

The Lewis acids chosen for this study were SbF₅ and BF₃. The very strong acid SbF₅ forms a stable 1:1 adduct with SO₂. An X-ray diffraction study revealed Sb-O bonding therein, F₅SbOSO.¹⁵ Boron(III) fluoride also yields a 1:1 adduct with SO₂; however, this compound is partly dissociated into its components above the melting point of -96 °C.¹⁶ We assume that the SO₂ in BF₃·SO₂ is also attached via oxygen. The labile BF₃·SO₂ and the stable SbF₅·SO₂ were considered possible representative electrophilic cleavage reagents whose reactions with metal-carbon σ bonds would be respectively catalytic and stoichiometric in Lewis acid.

Two examples of Lewis acid enhancement of electrophilic reactivity of SO₂ have recently been reported. Sulfur dioxide adds to cyclooctatetraene in the presence of SbF₅ at -70°C;^{17,18} by contrast, SO₂ alone appears unreactive.¹⁷ In the presence of BF₃, SO₂ undergoes an addition reaction with η^4 -C₄H₄Fe(CO)₃ to afford (η^3 -CH₂CHCH-CH₂)Fe(CO)₃[OS(OBF₃)],¹⁹ which was characterized by X-ray crystallography.^{19,20} Antimony(V) fluoride behaves similarly to BF₃. There is no observable reaction in the absence of the Lewis acid.

We now report on the reaction of η^5 -C₅H₅W(CO)₃R (R = CH₃,CH₂C₆H₅) with SO₂ in the presence of BF₃ and SbF₅, the two tungsten complexes having been selected because of their relatively slow reaction with SO₂ alone.²¹ Our study demonstrates a remarkable enhancement of the reactivity of SO₂ toward the tungsten-carbon σ bonds upon introduction of each of these Lewis acids. Certain aspects of this investigation were disclosed earlier in a preliminary form.²²

Results

Reactions. The reaction of η^{5} -C₅H₅W(CO)₃R (R = CH₃, CH₂C₆H₅) with SO₂, studied previously under synthetic conditions only,^{21,23} was followed by ¹H NMR spectroscopy to provide a more quantitative measure of reactivity. An examination of a solution of η^{5} -C₅H₅W(CO)₃CH₃ (**1a**) in neat SO₂ at -15 °C shows that the formation of η^{5} -C₅H₅W-(CO)₃S(O)₂CH₃ (**2a**) is ca. 16% complete after 27 days. At room temperature, approximately 10% of **1a** is converted to **2a** in 6 days, and the reaction appears substantially complete in 2 months. Similarly, after 6 days at room temperature, η^{5} -C₅H₅W(CO)₃C(O)₂CH₂C₆H₅ (**1b**) and SO₂ afford ca. 30% η^{5} -C₅H₅W(CO)₃S(O)₂CH₂C₆H₅ (**2b**), the insertion being virtually complete within 2 months. Both reactions proceed very cleanly to the respective S-sulfinates, and the O-sulfinato intermediates, observed earlier for several alkyl complexes

 η^5 -C₅H₅Fe(CO)₂R, η^5 -C₅H₅Mo(CO)₃R, Mn(CO)₅R, and Re(CO)₅R,²⁴ are not seen in the spectra.

Addition of an equimolar amount of BF₃ to a solution of **1a** in SO_2 results in a dramatic enhancement of reactivity in the insertion. Although there is no evidence of reaction at -78 °C, upon warming to -40 °C the solution changes color from yellow to burgundy red. An examination of this solution by ¹H NMR spectroscopy at -26 °C reveals two new singlet resonances at τ 3.98 and 7.51 ppm with the relative intensities 5:3. These new signals are attributed to η^5 -C₅H₅W(CO)₃[O- $S(OBF_3)CH_3$ (3a). The conversion of 1a to 3a at -26 °C requires less than 40 min for completion. In a separate, synthetic experiment involving 1a, SO₂, and BF₃, a red, microcrystalline solid was isolated which exhibits an ¹H NMR spectrum matching that of the 3a detected in solution. The rather elaborate isolation procedure of this moisture-sensitive compound is described fully in the Experimental Section. The composition of 3a as a 1:1:1 adduct of 1a, SO₂, and BF₃ was ascertained by analysis, and its structure was assigned from the IR and ¹H NMR spectroscopic data presented in the following subsection of this paper.

To determine whether reaction between 1a and SO₂ would be promoted also by catalytic amounts of the Lewis acid, 1a and SO₂ at reflux were allowed to interact with a deficiency (27%) of BF₃ for 2 h. The ¹H NMR spectrum of the reaction mixture showed the presence of 3a and some (ca. 30%) unreacted 1a, thus demonstrating that the BF₃ is assuming a stoichiometric rather than a catalytic role in the insertion. The observation that a mixture of approximately equimolar amounts of 1a and 3a in SO₂ at -20 °C retains its composition for at least 1 h points to quite a strong attachment of the Lewis acid in 3a, thus supporting the aforementioned conclusion. In both experiments, complete consumption of 1a and presence of 2a in addition to 3a would be expected if the promotion of the reaction by BF₃ were catalytic.

A tensimetric titration of 1a with BF_3 in toluene at $-23 \,^{\circ}C$ was carried out to check for the possibility of interaction between the two compounds. Plotting the results as total pressure over the solution vs. mole ratio of added BF_3 :1a yields a straight line. Thus, no adduct formation is indicated; unreacted 1a was recovered virtually quantitatively upon removal of the solvent. The change of color from yellow to reddish orange during the titration probably reflects a minor side reaction or decomposition of 1a effected by the BF_3 . In view of this result it appears unlikely that the formation of 3a from 1a proceeds via initial activation of the alkyl complex by BF_3 to yield an adduct which would then react with SO_2 to furnish 3a.

To test the generality of promotion of the SO_2 insertion by Lewis acids, reaction of **1a** and SO_2 was also examined in the presence of SbF_5 . Since SbF_5 is an extremely reactive and difficult to manipulate substance, some of our experiments were performed by intercalating SbF_5 in graphite to form a free-flowing black powder.²⁵ When used in this form, SbF₅ is much less reactive and can be handled with relative ease. Both pure SbF₅ in SO₂ solution and SbF₅ intercalated in graphite react readily with **1a** in SO₂ even at -78 °C to yield deep orange crystals after workup. The product, characterized as η^5 -C₅H₅W(CO)₃[OS(OSbF₅)CH₃] (**4a**) by elemental analysis and IR and ¹H NMR spectroscopy (vide infra), is strictly analogous to the BF₃ derivative **3a**. However, it is easier to handle than **3a** and appears to be more stable when exposed to air in solution or in the solid.

The ease of formation of $SbF_5 \cdot SO_2$ from the two components (at -60 to -50 °C²⁶) and its considerable stability to dissociation²⁷ both provide support for a direct, very facile interaction between **1a** and $SbF_5 \cdot SO_2$. With this system it is even less likely than with BF₃ $\cdot SO_2$ that the insertion proceeds first by complexation between **1a** and the Lewis acid followed by reaction with SO₂.

The behavior of the benzyl complex **1b** toward SO₂ and BF₃ is strictly analogous to that of **1a**. Thus, addition of an equimolar amount of BF₃ to **1b** in SO₂ at -78 °C in an NMR tube, followed by warming to -26 °C, results in a virtually complete conversion of **1b** to η^5 -C₅H₅W(CO)₃[OS(OBF₃)CH₂C₆H₅] (**3b**). This is indicated by the appearance of new resonances at τ 2.60 (complex), 4.06 (singlet), and 5.98 and 6.14 (AB quartet) with the relative intensities 5:5:2. In a similar but larger scale experiment, complex **3b** was isolated as a red oil exhibiting an ¹H NMR spectrum identical with that presented above. It is noteworthy that addition of BF₃ to a solution of **1b** in SO₂ at -78 °C immediately resulted in the formation of a brown precipitate, which dissolved upon warming the reaction mixture. The precipitate could not be isolated for characterization.

A similar reaction of **1b** with SO_2 and SbF_5 in place of BF_3 at -78 °C for 48 h led to the isolation of a red powder. This solid is thought to be η^5 -C₅H₅W(CO)₃[O-S(OSbF₅)CH₂C₆H₅] (**4b**) from the spectroscopic evidence presented later.

Complex 3a can be converted to the S-sulfinate 2a by reaction with Lewis bases under a variety of conditions. Accordingly, treatment of 3a in CH₂Cl₂ with NH₃ affords 2a in 85% yield along with BF₃·NH₃. The reaction of **3a** with another nitrogen base, aniline, also gives 2a in high yield; however, the boron-containing material could not be characterized, presumably owing to the known instability of BF₃-aniline reaction products.^{28,29} Additionally, **2a** was obtained from **3a** by dissolution in THF or water, exposure in CH₂Cl₂ solution to alumina or Florisil, and grinding with KBr and compressing into a pellet. Thus, although the BF_3 -promoted reaction of SO_2 with 1a is arrested at an intermediate, O-sulfinato stage, the final, S-sulfinato product of the insertion, 2a, may be conveniently obtained therefrom under ambient conditions. These and other reactions investigated herein of the tungsten complexes 1-4a comprise Scheme 1.

During an attempt at recrystallization of 3a from benzene by slow addition of pentane, an orange, crystalline solid was isolated. The ¹H NMR signals of this product match exactly the singlet resonances appearing at τ 3.84 (5 H) and 6.31 (3 H) ppm when a solution of 2a in SO₂ is allowed to react with approximately equimolar BF_3 at -16 °C. This latter reaction proceeds cleanly and reaches 80% completion in 45 min. The same substance was prepared by a tensimetric titration with BF₃ of 2a in a heterogeneous mixture in toluene at 25 °C. The plot in Figure 1 shows coordination of 0.8 mol of BF₃ per mol of 2a. We take this result to indicate the formation of a 1:1 complex of 2a and BF_3 , 5a, the low value of BF_3 uptake undoubtedly deriving from the heterogeneous nature of the reaction mixture. This 1:1 complex was in fact isolated, quantitatively, following the titration. Thus, 5a, formulated as η^5 -C₅H₅W(CO)₃[S(O)(OBF₃)CH₃] from spectroscopic data

Table I. Infrared Spectra of Organotungsten and Some Reference Compounds (cm⁻¹)^a

no.	compd	ν(C≡O) ^b	$\nu(S=O)^{c}$	$\nu(S-O)^{c,d}$	$\nu(\mathbf{BF})^c$	ν(SbF) ^c
2a	$n^{5}-C_{5}H_{5}W(CO)_{3}S(O)_{2}CH_{3}$	2046, 1955	1188, 1054			
2b	η^{5} -C ₅ H ₅ W(CO) ₃ S(O) ₂ CH ₂ C ₆ H ₅ ^e	2053, 1975, 1955 ⁷	1201, 1951			
3a	η^{5} -C ₅ H ₅ W(CO) ₃ [OS(OBF ₃)CH ₃]	2052, 1960		870	1132 m, 1105 m, 870	
3b	η^5 -C ₅ H ₅ W(CO) ₃ [OS(OBF ₃)CH ₂ C ₆ H ₅]	2056, 1970 ^k		845 ^k	1130, 845, 810 sh <i>k</i>	
4 a	η^5 -C ₅ H ₅ W(CO) ₃ [OS(OSbF ₅)CH ₃]	2058, 1967		990, 870 m, 845 sh		660, 645
4b	η^{5} -C ₅ H ₅ W(CO) ₃ [OS(OSbF ₅)CH ₂ C ₆ H ₅]	2060, 1970 ^j		986 m		660
5a	η^5 -C ₅ H ₅ W(CO) ₃ [S(O)(OBF ₃)CH ₃]	2050, 1964	1200	860	1142, 1117, 860, 820	
	η^{5} -C ₅ H ₅ Fe(CO)[P(n -C ₄ H ₉) ₃]- [S(O)(OBF ₃)CH ₃] ^f	·	1130	890	1165 sh, 1130, 1090 sh, 850 m	
	$(C_6H_5)_3P \cdot BF_3^g$				1150-1100, 915, 888	
	$C_5H_5N\cdot BF_3^h$				1165, 1125, 912, 893	
	F₅SbOSO ⁱ		13277	11021		695,659 <i>1</i>

^{*a*} All strong unless otherwise noted. Abbreviations: m, medium; sh, shoulder. ^{*b*} CH₂Cl₂ solution. ^{*c*} Nujol mull. ^{*d*} Assignment tentative. ^{*e*} Reference 23. ^{*f*} Reference 32. ^{*g*} Scott, R. N.; Shriver, D. F.; Lehman, D. D. *Inorg. Chim. Acta* **1970**, *4*, 73-78. ^{*h*} Reference 31. ^{*i*} Reference 26. ^{*j*} CHCl₃ solution. ^{*k*} Neat. ^{*l*} Powder between AgCl plates.

Figure 1. Tensimetric titration of 2a with BF₃ in toluene at 25 ± 2 °C. *P* is the total pressure over the reaction mixture.

(vide infra), and **3a** are isomeric 1:1:1 adducts of **1a**, SO₂, and BF₃. Complex **5a** loses BF₃ under vacuum at 25 °C in ca. 10 h to regenerate **2a** quantitatively.

Adduct formation occurs also between 2a and SbF_5 or F_5SbOSO as ascertained by ¹H NMR spectroscopy. When equimolar amounts of 2a and SbF_5 intercalated in graphite are allowed to react in SO_2 at -45 °C, the solution changes color from yellow to yellow-brown. After 7 h, the ¹H NMR spectrum shows quantitative conversion of 2a to η^5 -C₅H₅W-(CO)₃[S(O)(OSbF₅)CH₃] or η^5 -C₅H₅W(CO)₃[S(O)[O-S(O)OSbF₅]CH₃] (6a), exhibiting singlet resonances at τ 3.95 (5 H) and 6.47 (3 H) ppm.

Complex 2b reacts similary to 2a with each of BF₃ and SbF₅ (intercalated in graphite) in SO₂ at -45 °C. The formation of η^{5} -C₅H₅W(CO)₃[S(O)(OBF₃)CH₂C₆H₅] (**5**b) reaches completion within 1 h as the solution turns deep red, whereas the formation of η^{5} -C₅H₅W(CO)₃[S(O)(OSbF₅)CH₂C₆H₅] or η^{5} -C₅H₅W(CO)₃[S(O)[OS(O)OSbF₅]CH₂C₆H₅] (**6b**) was observed to be essentially complete in 7 h to give a yellowbrown solution. Both reactions, monitored by ¹H NMR spectroscopy, are quantitative.

Characterization of Complexes. Complexes 3-5a and 3-4b were isolated and characterized by a combination of elemental analysis, IR and ¹H NMR spectroscopy, and chemical reactions. IR and ¹H NMR spectral data, set out in Tables I and II, respectively, were especially helpful in making structural assignments.

All of the aforementioned complexes show IR $\nu(C \equiv O)$ spectra which are similar to those of the S-sulfinates **2a** and **2b**, as well as a characteristic singlet proton resonance for the η^5 -C₅H₅ ring. These data indicate that the η^5 -C₅H₅W(CO)₃

Figure 2. Infrared spectra in the 1300–650-cm⁻¹ region of some organotungsten complexes in Nujol mull.

fragment remains intact and that the BF3.SO2 or SbF5.SO2 is inserted into the W-R bond. The IR spectra of 2-5a in the 1300-650-cm⁻¹ region, shown in Figure 2, are particularly informative with regard to the nature of the insertion linkages. Thus, complex 2a exhibits two terminal SO stretching bands (1188 and 1054 $\rm cm^{-1}$), in agreement with the presence of an S-sulfinato group.³⁰ By contrast, **5a** shows only one terminal SO stretching absorption (1200 cm⁻¹), and **3a** and **4a** display none. However, assignment of $\nu(S==O)$ bands for 3a and 5a from the two spectra alone is by no means unequivocal, since $v_{as}(BF)$ absorptions occur in the same region³¹ (also see Table I for examples). For that reason, a comparison of the spectra of 4a with those of 3a (in particular) and 5a becomes necessary. It is seen that substitution of SbF_5 in 4a for BF_3 in 3a eliminates the bands at 1132 and 1105 cm^{-1} present for the latter complex. Accordingly, these absorptions are assigned to v_{as} (BF). The same assignment follows for the absorptions at 1142 and 1117 cm^{-1} in the spectrum of 5a. Hence it is concluded that 5a contains one terminal S==O, and 3a and 4a none.

Fable II. ¹ H NMR Spectra of Organotur	igsten and Some Reference	Compounds $(\tau, ppm)^a$
--	---------------------------	---------------------------

		chemical shift of		
no.	compd	C ₅ H ₅	CH ₂	CH ₃
1a	η^{5} -C ₅ H ₅ W(CO) ₃ CH ₃	4.48		9.58
1b	η^{5} -C ₅ H ₅ W(CO) ₃ CH ₂ C ₆ H ₅	4.48	7.12	
2a	η^{5} -C ₅ H ₅ W(CO) ₃ S(O) ₂ CH ₃	4.02		6.76
2b	η^{5} -C ₅ H ₅ W(CO) ₃ S(O) ₂ CH ₂ C ₆ H ₅	4.21	5.70	
3a	η^5 -C ₅ H ₅ W(CO) ₃ [OS(OBF ₃)CH ₃]	3.98		7.51
3b	η^5 -C ₅ H ₅ W(CO) ₃ [OS(OBF ₃)CH ₂ C ₆ H ₅]	4.06	5.98, 6.14 q _{AB} ^f	
4a	η^5 -C ₅ H ₅ W(CO) ₃ [OS(OSbF ₅)CH ₃]	3.96	2	7.30
4 b	η^5 -C ₅ H ₅ W(CO) ₃ [OS(OSbF ₅)CH ₂ C ₆ H ₅] ^b	4.07	5.92, 5.99 ^g	
5a	η^{5} -C ₅ H ₅ W(CO) ₃ [S(O)(OBF ₃)CH ₃]	3.84		6.31
5b	η^{5} -C ₅ H ₅ W(CO) ₃ [S(O)(OBF ₃)CH ₂ C ₆ H ₅]	3.93	4.89	
6a	η^5 -C ₅ H ₅ W(CO) ₃ [S(O)(OSbF ₅)CH ₃] ^c	3.95		6.47
6b	η^5 -C ₅ H ₅ W(CO) ₃ [S(O)(OSbF ₅)CH ₂ C ₆ H ₅] ^d	4.04	5.36	
	η^5 -C ₅ H ₅ Mo(CO) ₃ S(O) ₂ CH ₂ C ₆ H ₅ ^e	4.32	5.78	
	$\eta^5 - C_5 H_5 M_0 (CO)_3 [OS(O)CH_2 C_6 H_5]^{e}$	4.29	6.31, 6.49 q _{AB} ^h	
	$Mn(CO)_5S(O)_2CH_3^e$		1.0	6.91
	$Mn(CO)_5[OS(O)CH_3]^e$			7.72

^{*a*} In SO₂; C₆H₅ protons not included. All singlets unless otherwise noted. Abbreviation: q_{AB} , AB quartet. ^{*b*} CDCl₃ solution. ^{*c*} Alternative structure η^5 -C₅H₅W(CO)₃{S(O)[OS(O)OSbF₅]CH₃}; see text. ^{*d*} Alternative structure η^5 -C₅H₅W(CO)₃{S(O)[OS(O)OSbF₅]CH₂C₆H₅}; see text. ^{*e*} Reference 24. ^{*f*} J_{AB} = 13.2 Hz. ^{*g*} Inner peaks of a presumed AB quartet. ^{*h*} J_{AB} = 12.5 Hz.

Of several possible structures $W(BF_3 \cdot SO_2)CH_3$ with a single terminal S=0, e.g., $W[S(O)(OBF_3)CH_3]$, W[S(O)-(OCH₃)BF₃], and W[OS(O)(BF₃)CH₃], the one present in 5a is undoubtedly that listed first. This follows from the facile and reversible reaction of 2a with BF₃ to yield 5a. Complexes with an identical $S(O)(OBF_3)CH_3$ ligand, $\eta^5-C_5H_5Fe$ - $(CO)(PR_3)[S(O)(OBF_3)CH_3]$ (R = $n-C_4H_9$, C_6H_5), have been reported;³² some of the IR spectral data for one of them $(R = n - C_4 H_9)$ are included in Table I for comparison. Several different arrangements are also possible for W(A·SO₂)CH₃ $(A = BF_3, SbF_5)$ without terminal S==O bonds, e.g., W[OS(OA)CH₃] and W[OS(OCH₃)A]. There appears little doubt that the actual fragment in 3a and 4a is W[OS(OA)-CH₃]. Support for this conclusion derives from the facile conversion of **3a** to **2a** by the action of NH_3 , $C_6H_5NH_2$, and other Lewis bases; thus 3a and 4a almost certainly represent examples of a Lewis acid intercepted O-sulfinato intermediate in the SO_2 insertion.

The lR spectra in the 1300-650-cm⁻¹ region of the benzyl derivatives **3b** and **4b** are very similar to those of **3a** and **4a**, respectively, suggesting analogous structures. These structures receive support from the ¹H NMR spectra which show non-equivalent CH₂ protons owing to the presence of a chiral sulfur. Furthermore, the ¹H NMR spectra reveal that all of **3-4a,b** show CH₂ or CH₃ signals upfield (0.22-0.75 ppm) from the corresponding resonances of the *S*-sulfinate **2a** or **2b**. Both the nonequivalence and the upfield shift were noted before in the spectra of the *O*-sulfinates derived from transition metalmethyl and -benzyl complexes by SO₂ insertion²⁴ (see Table II for examples). They thus lend further credence to the structures assigned in this study.

Although complexes 5-6b and 6a were only observed in SO₂ solution by ¹H NMR spectroscopy, their structures as Lewis acid adducts of 2b and 2a, respectively, may be assigned with reasonable confidence. These complexes were formed cleanly and quantitatively from 2a or 2b and BF₃ or SbF₅ (or F₅SbOSO). Since only a single product resulted in each case as the ratio of the S-sulfinate to the Lewis acid varied from 1:1 to ca. 1:2, this product is formulated as a 1:1 adduct of the reactants. By analogy with the inferred structure of the related 5a (vide supra), the Lewis acid almost certainly adds to a sulfinate oxygen. The only unresolved question concerns the added acid in 6a and 6b, whether SbF₅ or F₅SbOSO; we cannot answer this from the ¹H NMR data alone.

The 1 H NMR spectra of **5–6a,b** all exhibit similar features which are consistent with the proposed structures. Thus, in

direct contrast to **3–4a,b**, these complexes show CH_2 and CH_3 resonances downfield (0.29–0.81 ppm) from those of the parent *S*-sulfinate. Moreover, **5b** and **6b** do not exhibit a magnetic nonequivalence of the CH_2 protons even though the benzyl group is bonded to a chiral sulfur. This unexpected behavior may possibly arise from a rapid shift of the BF₃ or SbF₅ between the sulfinate oxygens. However, such a site exchange need not be occurring to give the observed singlet CH_2 resonance, as the complex below also shows magnetically equivalent methylene protons.³³

Discussion

First we wish to compare the reaction between the tungsten-methyl complex 1a and neat SO₂ with that between 1aand SO₂ in the presence of BF₃. The latter reaction proceeds cleanly to 3a, which has been isolated and characterized as described earlier in the paper. A reasonable structural alternative to 3a, 5a, may be ruled out by virtue of two independent syntheses and a spectroscopic characterization of this isomeric compound. When SO₂ alone reacts with 1a, the S-sulfinate 2ahas been observed, isolated, and characterized.

The insertion of SO_2 is very significantly promoted by the presence of BF₃. Considering the observations that the reaction of 1a with neat SO₂ is 16% complete in 27 days at -15 °C and 10% complete in 6 days at 25 °C, a half-life of 152 days is calculated at -26 °C. At this temperature the conversion of 1a to 3a by SO₂ and BF₃ has a half-life of not more than 10-15 min. Thus the reaction of 1a with SO₂ and BF₃ is at least 20 000 times faster than that of 1a with SO₂ alone—a very significant enhancement indeed. The analogous reactions of 1a with SO₂ and SbF₅ to give 4a and of the tungsten-benzyl complex 1b with each of SO₂-BF₃ and SO₂-SbF₅ to yield 3b and 4b, respectively, also experience a marked promotion by the added Lewis acid.

In the light of the aforementioned results, the possibility of a change of reaction mechanism on going from the insertion with neat SO_2 to that with SO_2 and BF_3 becomes an important consideration. To shed some light on this problem, stereo-chemical experiments were conducted in our laboratory on the

Scheme II

reactions of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅ with neat SO₂ and with SO₂ and BF₃.³⁴ In both cases, inversion of configuration at the α carbon of the CHDCHDC₆H₅ ligand was observed. Thus it appears that the insertion of SO₂ alone in 1 and in other coordinatively saturated transition metal carbonyl alkyl complexes, described fully elsewhere,^{13,35} bear a close mechanistic analogy. Our inability to detect the *O*-sulfinato intermediates from 1a and 1b in all probability derives from their low concentration in solution owing to a relatively slow rate of cleavage of the W-R bond compared to *O*-sulfinato to *S*-sulfinato isomerization.

The insertion of $BF_3 \cdot SO_2$ in 1 apparently follows a similar mechanism, shown in Scheme II. We attribute the marked enhancement of reactivity in the presence of BF_3 or SbF_5 to a more facile interaction of 1 with the stronger electrophile $BF_3 \cdot SO_2$ or $SbF_5 \cdot SO_2$ than with the weaker electrophile SO_2 . Alternatively, the presence of BF_3 (or SbF_5) may help reduce the developing negative charge on the SO_2 oxygens in the transition state (7) and thus provide a driving force for the reaction. Arguments have already been advanced (vide supra) for the participation of the $BF_3 \cdot SO_2$ adduct rather than the BF_3 and SO_2 components separately.

Another facet of the insertion which merits attention is its arrest at the O-sulfinato stage by the coordination of BF3 or SbF_5 (3 or the SbF_5 analogue in Scheme II). We believe that the formation in these reactions of the corresponding tungsten S-sulfinate is precluded by a decreased basicity of the sulfur in 3 compared to that in the uncomplexed tungsten O-sulfinate, owing to the coordination of the Lewis acid. This would disfavor isomerization either via a proposed³⁵ ion pair, 8, or intramolecularly. However, removal of the coordinated BF3 in **3a** by the action of NH_3 , $C_6H_5NH_2$, or some other Lewis base rapidly leads to the formation of the S-sulfinate 2a. It is possible that the previously observed²⁴ considerable stability of some transition metal O-sulfinates in liquid SO₂ derives from a similar interaction, but of the SO₂ acting as an acid, with the coordinated O-sulfinato ligand. Upon evaporation of the solvent, a rearrangement to the S-sulfinate occurs there as well.

Finally, the demonstrated ability of Lewis acids to promote SO₂ insertion in **1** raises the question of generality of such an acid assistance in enhancing reactions at transition metalcarbon σ bonds. Studies along these lines are underway in our laboratory. For example, reaction between η^5 -C₅H₅Fe(C-O)₂CH₃ and an analogue of SO₂, C₆H₁₁NSO, is appreciably speeded up by the presence of BF₃.³⁶ An extension to some common and useful unsaturated molecules such as olefins, acetylenes, and CO₂ is planned.

Experimental Section

General Procedures. All reaction of the Lewis acids BF_3 and SbF_5 were conducted in a grease-free (also Hg-free for SbF_5) vacuum line. Separation and purification of products were carried out using Schlenk-type glassware.³⁷ Sample preparation and various manipulations of nonvolatile air- and/or moisture-sensitive materials were conducted in a drybox filled with argon.

Chromatography was performed using columns packed either with neutral alumina (Ventron) deactivated by the addition of 10% H₂O or with 60–100 mesh Florisil. Melting points were measured in vacuo or under argon on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Elemental analyses were done by Schwarzkopf Microanalytical Laboratory, Woodside, N.Y.

Physical Measurements. Infrared (IR) spectra of solutions were obtained on a Beckman IR-9 spectrophotometer, whereas IR spectra of solids as Nujol and Fluorolube mulls were recorded on a Perkin-Elmer Model 337 spectrophotometer.

¹H NMR spectra were measured on a Varian A-60A spectrometer equipped with low-temperature accessories. All SO₂ solutions were sealed in NMR tubes under vacuum and included Me₄Si as an internal reference. ¹⁹F NMR spectra were obtained on a Bruker HX-90 spectrometer at 84.6 MHz with the assistance of Dr. C. E. Cottrell.

Materials. Commercially procured solvents were reagent grade quality and were purified further by reflux over and distillation from P_4O_{10} (CH₂Cl₂ and CHCl₃), CaH₂ (benzene), or LiAlH₄ (pentane, hexane, and toluene). They were deaerated by three freeze-thaw cycles or by purging with argon for at least 30 min.

Sulfur dioxide from Air Products was purified by passage through concentrated H_2SO_4 and a column packed with P_4O_{10} prior to use. Boron(111) fluoride (Matheson) was treated with NaF and then fractionally distilled. Antimony(V) fluoride (Columbia Organic Chemicals) was purified by trap to trap distillation. It was intercalated in graphite by the procedure of Lalancette²⁵ to yield a free-flowing black powder containing 65% SbF₅ by weight. The powder, which did not fume in moist air, was generally handled in a dry argon atmosphere, and its reactions were initiated by addition of solvent on a vacuum line. All other chemicals were procured in reagent grade or equivalent quality and were used as received.

The organotungsten complexes η^{5} -C₅H₅W(CO)₃R where R = CH₃ and CH₂C₆H₅ were prepared by the general method of Piper and Wilkinson³⁸ and were purified as reported elsewhere.³⁹ The corresponding *S*-sulfinates, η^{5} -C₅H₅W(CO)₃S(O)₂R where R = CH₃ and CH₂C₆H₅, were synthesized according to the literature.²³ The former was isolated in 45% yield whereas, by employing lower reaction temperatures (35-40 °C) and a longer time (8 davs), the latter was obtained in 90% yield.

Tensimetric Titrations with BF₃. A. η^5 -C₅H₅W(CO)₃CH₃ (1a). A degassed solution of 1a (0.33 g, 0.95 mmol) in toluene (25 mL) was maintained at -23 °C with the aid of a CCl₄ slush bath. This solution was treated with a fivefold excess of BF₃ introduced in 11 aliquots from a reservoir cooled to -126 °C. Pressure readings were taken after allowing 30 min for equilibration following each addition. A small quantity of brown precipitate formed on addition of the first portion of BF₃, and the solution turned reddish orange during the titration. After all of the BF₃ had been added, volatile materials were removed under vacuum. An IR spectrum in the ν (C=O) region of the residue showed a very weak absorption at 2060 cm⁻¹ in addition to strong bands at 2020 and 1930 cm⁻¹ (CH₂Cl₂ solution).

B. η^{5} -C₅H₅W(CO)₃S(O)₂CH₃ (2a). Preparation of η^{5} -C₅H₅W-(CO)₃[S(O)(OBF₃)CH₃] (5a). A heterogeneous mixture of partly dissolved 2a (0.68 g, 1.7 mmol) in toluene (50 mL) was degassed and then treated with excess (2.0 mmol) BF₃. The BF₃ was introduced in aliquots from a flask at -196 °C and, after each addition, was allowed to equilibrate for 30-45 min to the temperature (25 ± 2 °C) of the reaction mixture for pressure measurements. At the conclusion of the titration volatile materials were removed under vacuum and the residue was washed with CH₂Cl₂ to leave a yellow powder, 5a, mp (under Ar) 100-105 °C dec, in essentially quantitative yield: ¹H NMR (CDCl₃) τ 4.08 s (C₅H₅), 6.64 s (CH₃) ppm; IR (Nujol) 3115 m, 2060 s, 1980 s, 1950 s, 1312 m, 1200 vs, 1142 s, 1117 s, 1070 vw, 1060 vw, 1010 m, 998 m, 960 m, 890 sh, 860 s br, 820 s br, 725 m, 690 w cm⁻¹.

Reaction of η^5 -C₅H₅W(CO)₃CH₃ (1a) with SO₂ and BF₃. Preparation of η^5 -C₅H₅W(CO)₃[OS(OBF₃)CH₃] (3a). The reaction and subsequent workup were carried out in Schlenk-type apparatus consisting of a fritted filter tube attached at both ends to round-bottom flasks and equipped with appropriate vacuum and inert atmosphere connectors.

Sulfur dioxide (50 mL liquid) was introduced to the evacuated round-bottom reaction flask containing 2.54 g (7.30 mmol) of **1a** at -78 °C. After the tungsten-methyl complex had dissolved the flask was placed in liquid nitrogen (-196 °C) and treated with 7.29 mmol

of BF₃ (four 57.64-mL aliquots, 2343 Torr total, 23.7 °C). The resulting mixture changed color from yellow to deep burgundy red upon slow warming with stirring to -23 °C (CCl₄ slush bath). After 45 min of reaction time, the solution was cooled to -196 °C and treated with 20 mL of CH₂Cl₂ on a vacuum line. The reaction mixture was allowed to warm and then was concentrated to 20 mL under vacuum. An additional 40 mL of CH₂Cl₂ was added and the volume was further reduced to 10 mL. The mixture was then filtered to remove some unidentified brown decomposition product. Addition of 50 mL of pentane to the clear burgundy red filtrate afforded a large amount of red precipitate. This microcrystalline solid was collected by back-filtration on the clean side of the frit, washed with pentane, dried in vacuo, and transferred to a Schlenk tube for storage, approximate yield 70-85%.

The product was recrystallized from a 50:50 mixture of $CH_2Cl_2-C_6F_6$ by partial removal of solvent on a rotary evaporator, mp (in vacuo) 97 °C with gas evolution. Anal. Calcd for C₉H₈BF₃O₅SW: C, 22.52; H, 1.68; F, 11.88. Found: C, 22.48, 23.10; H, 1.90, 1.83; F, 10.87, 11.07.

¹H NMR (CDCl₃): τ 4.01 s (C₅H₅), 7.52 s (CH₃) ppm. ¹⁹F NMR $(50:50 \text{ CH}_2\text{Cl}_2-\text{C}_6\text{F}_6)$: ϕ 147.64 s br ppm (relative to CFCl₃, ϕ 0 ppm). 1R (Nujol): 3031 w, 2055 s, (1960 s, 1940 s), 1318 vw, 1308 vw, (1132 m, 1105 m), 1068 w, (1018 w, 1010 w, 1000 w), 978 w, 950 w, 870 s br, 845 w, (835 w, 830 w), 713 w, 580 w, 550 w, 510 w, 462 w cm⁻¹.

The product is soluble in CHCl₃ and CH₂Cl₂, moderately soluble in C_6H_6 , sparingly soluble in C_6F_6 , and insoluble in pentane. When pure, it is stable under argon or in vacuo at 25 °C for at least 2 years. Moreover, it shows no sign of decomposition when exposed to dry air for 3 h. However, it rapidly turns to a dark, gummy material in a stream of water-saturated nitrogen.

Reaction of η^5 -C₅H₅W(CO)₃CH₂C₆H₅ (1b) with SO₂ and BF₃. Preparation of η^5 -C₅H₅W(CO)₃[OS(OBF₃)CH₂C₆H₅] (3b). The reaction between 1b (0.722 g, 1.70 mmol), SO_2 (45 mL liquid), and BF_3 (57.64 mL, 345.8 Torr, 20.50 °C and 57.64 mL, 188.9 Torr, 20.10 °C; 1.68 mmol) was conducted similarly to the corresponding reaction of 1a. Addition of BF_3 to the solution of 1b in SO_2 resulted in the formation of brown, plate-like crystals. This precipitate dissolved upon warming the reaction mixture, and the solution acquired a deep red color. Removal of volatile materials under vacuum left a red oil, 3b, which underwent partial decomposition during attempts at purification and crystallization: ¹H NMR (CDCl₃) τ 2.8 c (C₆H₅), 4.16 s (C_5H_5) , 5.98, 6.29 q_{AB} (CH₂, J_{AB} = 13.4 Hz) ppm; 1R (neat) 2055 vs, 1960 vs br, 1130 vs br, 1060 m, 1000 m, 950 m, 910 s, 845 s br, 810 sh, 770 w, 730 s, 698 m, 645 w, 615 w, 548 m, 510 m, 460 m cm⁻¹.

Reaction of η^5 -C₅H₅W(CO)₃CH₃ (1a) with SO₂ and SbF₅. Preparation of η^5 -C₅H₅W(CO)₃[OS(OSbF₅)CH₃] (4a). A colorless solution of SbF₅ (0.382 g, 1.76 mmol) in SO₂ was added to ca. 30 mL of a yellow solution of 1a in SO₂ at -78 °C. Immediately the mixture turned red. Reaction was allowed to proceed at -78 °C for 2 h, after which time volatile materials were removed under vacuum. The reddish brown residue was extracted with CH2Cl2 and filtered in a drybox to give a deep red solution. Addition of pentane and concentration of the resulting solution on a rotary evaporator afforded small, plate-like crystals which were isolated by decantation of the mother liquor. These deep orange crystals of 4a, mp 110 °C dec, could be handled in air for a short time without any noticeable decomposition. Anal. Calcd for C₈H₈F₅O₅SSbW: C, 17.19; H, 1.28; Sb, 19.36. Found: C, 17.16; H, 1.98; Sb, 19.65.

¹H NMR (CDCl₃): τ 4.02 s (C₅H₅), 7.39 s (CH₃) ppm. IR (Nujol and Fluorolube): 3121 w, 2933 vw, 2050 s, 1955 vs br, 1310 w, 1070-1030 m br, 990 s, 870 m, 845 sh, 835 sh, 720 w, 660 vs, 645 s, 610 w, 545 w, 505 w, 465 w cm⁻¹

The above reaction was also carried out using SbF5 intercalated in graphite in place of pure SbF5. Sulfur dioxide (15 mL liquid) was condensed onto a mixture of 1a (0.167 g, 0.480 mmol) and excess SbF5 intercalated in graphite at -78 °C. The resulting mixture was allowed to warm until vapor pressure of the SO₂ reached ca. 400 Torr. The reaction was allowed to proceed for 2 h, after which time volatile materials were removed under vacuum and the residue was dissolved in 10 mL of CH₂Cl₂ and filtered to give a clear red solution. An IR spectrum of this solution showed absorptions at 2058 m, 2020 vs, 1967 m br, and 1930 vs br cm⁻¹, attributed to 1a and 4a. The two complexes were separated by crystallization from CH₂Cl₂-hexane to give 0.073 g of unreacted 1a and 0.032 g (11% yield) of 4a.

Reaction of η^5 -C₅H₅W(CO)₃CH₂C₆H₅ (1b) with SO₂ and SbF₅.

Preparation of η^5 -C₅H₅W(CO)₃[OS(OSbF₅)CH₂C₆H₅] (4b). In a reaction very similar to that of its methyl analogue, 1b (1.16 g, 2.73 mmol) was allowed to interact with SbF5 (0.593 g, 2.74 mmol) in 10 mL of SO₂ at -78 °C for 48 h. Materials volatile at -78 °C were then removed and the residue was extracted with CH_2Cl_2 at -23 °C, leaving 0.938 g of a brown, insoluble solid with IR absorptions at 2120 m, 2060 s, 1970 s, 865 m br, and 665 vs cm⁻¹ (Nujol mull). Further attempts at purification of this solid were unsuccessful. Upon treatment of the extract with pentane, a red powder precipitated. This mixture was filtered and solvent was removed from the filtrate resulting in a recovery of 0.201 g of 1b. The red precipitate (0.53 g, 28% yield), which is slightly soluble in CHCl₃, was identified as 4b: IR (Nujol) 3140 w, 2070 s, 1980 s br, 986 m, 890 w br, 850 w br, 770 w, 700 w, 668 sh, 660 s cm⁻¹.

Reactions of η^5 -C₅H₅W(CO)₃[OS(OBF₃)CH₃] (3a). A. With NH₃. A solution of 3a (0.584 g, 1.30 mmol) in 30 mL of CH₂Cl₂ was treated with NH₃ (57.64 mL, 414.1 Torr, 25.6 °C; 1.28 mmol) at -196 °C. When the resulting mixture was allowed to warm to room temperature with stirring, a precipitate formed and the solution changed color from red to orange. After 45 min of reaction time, the precipitate was filtered off and washed with CH₂Cl₂. This white solid was shown to be BF₃·NH₃ by comparison of its IR spectrum with that of an authentic sample of BF3•NH3, prepared according to the literature.⁴⁰ The filtrate and the wash were combined, concentrated to 10 mL on a rotary evaporator, and slowly treated with pentane. The resulting yellow precipitate, 2a, was collected on a filter, yield 0.419 g (85%).

B. With Aniline. A large excess of aniline was added dropwise to a solution of 3a in CH₂Cl₂ at room temperature. The white precipitate (adduct of aniline and BF₃^{28,29}) was filtered off, and **2a** was isolated from the filtrate as in the preceding reaction.

C. Isomerization to η^5 -C₅H₅W(CO)₃[S(O)(OBF₃)CH₃] (5a). A closed glass system consisting of an inner tube containing a saturated solution of 3a in benzene (ca. 5 mL) and an outer tube filled with pentane under argon was set aside at room temperature in the dark. Pentane slowly collected in the inner tube, and within 12 h a colorless layer had formed over the red solution of 3a. After 15 days, the benzene and pentane solutions were decanted from the crystals which had deposited on the sides of the tube. Three different compounds were identified by 1R spectroscopy: yellow 2a (primarily in contact with the upper pentane layer), orange 5a (primarily near the interface of the pentane and benzene layers), and red 3a (a few crystals near the bottom of the benzene layer). The overall yield of the crystalline products was low

Acknowledgments. We are grateful to the National Science Foundation for support (Grant CHE76-02413 A02 to A.W.). Part of this study was carried out at Cambridge University during the tenure of A.W. as a Fellow of the John Simon Guggenheim Memorial Foundation. Our thanks go to Professor J. Lewis and Dr. B. F. G. Johnson for providing the hospitality and stimulation.

References and Notes

- (1) Presented in part at the 8th International Conference on Organometallic Chemistry, Kyoto, Japan, Sept 12-16, 1977. Parshall, G. W.; Mrowca, J. J. Adv. Organomet. Chem. 1968, 7, 157-
- (2)209
- Wojcicki, A. Ann. N.Y. Acad. Sci. 1974, 239, 100-113. Heck, R. F. "Organotransition Metal Chemistry", Academic Press: New York, N.Y., 1974; pp 48–54.
- Baird, M. C. J. Organomet. Chem. **1974**, 64, 289–300. Rosenblum, M. Acc. Chem. Res. **1974**, 7, 122–128. Daub, G. W. Prog. Inorg. Chem. **1977**, 22, 409–423.
- (6)
- (7)
- Johnson, M. D. Acc. Chem. Res. 1978, 11, 57-65
- (9) Kotz, J. C.; Pedrotty, D. G. Organomet. Chem. Rev., Sect. A 1969, 4, 479-547
- (10) Shriver, D. F. Acc. Chem. Res. 1970, 3, 231-238 (11)Lehman, D. D.: Shriver D. F. Inorg. Chem. 1974, 13, 2203-2207, and references cited therein.
- Porter, R. A.; Shriver, D. F. J. Organomet. Chem. 1975, 90, 41-47. (12)
- (13) Wojcicki, A. Adv. Organomet. Chem. 1974, 12, 31-81
- (14) Jacobson, S. E.; Wojcicki, A. J. Organomet. Chem. 1974, 72, 113–120.
 (15) Moore, J. W.; Baird, H. W.; Miller, H. B. J. Am. Chem. Soc. 1968, 90, 1358-1359.
- (16) Booth, H. S.; Martin, D. R. J. Am. Chem. Soc. 1942, 64, 2198-2205.
- Gastelger, J.; Huisgen, R. J. Am. Chem. Soc. 1972, 94, 6541-6543.
- (18) Paquette, L. A.; Jacobsson, U.; Oku, M. J. Chem. Soc., Chem. Commun. 1975, 115-116.
- Churchill, M. R.; Wormald, J.; Young, D. A. T.; Kaesz, H. D. J. Am. Chem. (19) Soc. 1969, 91, 7201-7203.

883

- (20) Churchill, M. R.; Wormald, J. Inorg. Chem. 1970, 9, 2430–2436.
 (21) Graziani, M.; Bibler, J. P.; Montesano, R. M.; Wojcicki, A. J. Organomet.
- Chem. 1969, 16, 507-511.
- (22) Severson, R. G.; Wojcicki, A. Inorg. Chim. Acta 1975, 14, L7-L8.
- (23) Kroll, J. O.; Wojcicki, A. J. Organomet. Chem. 1974, 66, 95–101.
 (24) Jacobson, S. E.; Reich-Rohrwig, P.; Wojcicki, A. Inorg. Chem. 1973, 12, 717-723
- (25) Lalancette, J. M. U.S. Patent 3 950 262, April 13, 1976. Lalancette, J. M.; Latontaine, J. J. Chem. Soc., Chem. Commun. 1973, 815.
 (26) Byler, D. M.; Shriver, D. F. Inorg. Chem. 1976, 15, 32–35.
 (27) Aynsley, E. E.; Peacock, R. D.; Robinson, P. L. Chem. Ind. (London) 1951,
- 1117
- (28) Nowak, P.; Saure, M., Kunststoffe 1964, 54, 557-564.
- (29) Satchell, R. S.; Satchell, D. P. N. Chem. Ind. (London) 1965, 35, 1520.
 (30) Wojcicki, A. Acc. Chem. Res. 1971, 4, 344–352.

- (31) Waddington, T. C.; Klanberg, F. J. Chem. Soc. 1960, 2339-2343.
- (32) Ross, D. A.; Wojcicki, A. Inorg. Chim. Acta 1971, 5, 6-8. (33) Severson, R. E.; Wojcicki, A. J. Organomet. Chem. 1978, 149, C66-
- C70 (34) Su, S.-C. H.; Wojcicki, A. To be submitted for publication.
- (35) Jacobson, S. E.; Wojcicki, A. J. Am. Chem. Soc. 1973, 95, 6962-6970
- (36) Severson, R. E.; Wojcicki, A. To be submitted for publication.
 (37) Shriver, D. F. "The Manipulation of Air-Sensitive Compounds", McGraw-Hill: New York, N.Y., 1969.
- (38) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104-124 (39) Severson, R. E.; Wojcicki, A. J. Organomet. Chem., 1978, 157, 173-
- 185
- (40) Labengayer, A. W.; Condike, G. F. J. Am. Chem. Soc. 1948, 70, 2274–2276.

A Comparison of the Rates of Electron Exchange Reactions of Ammine Complexes of Ruthenium(II) and -(III) with the Predictions of Adiabatic, Outer-Sphere Electron Transfer Models

Gilbert M. Brown and Norman Sutin*

Contribution from the Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973. Received June 22, 1978

Abstract: The rate constants for the $Ru(NH_3)_6^{3+/2+}$, $Ru(NH_3)_4(bpy)^{3+/2+}$, and $Ru(NH_3)_2(bpy)_2^{3+/2+}$ electron exchange reactions have been measured by a technique involving subtle modifications of the ligands. The rate constants (M^{-1} s⁻¹, medium) at 25 °C are 3.2×10^3 , $0.1 \text{ M CF}_3\text{SO}_3\text{H}$, for the Ru(NH₃)₆^{3+/2+} exchange; 7.7×10^5 , $0.1 \text{ M CF}_3\text{SO}_3\text{H}$, and 2.2×10^6 , 0.1 M HClO_4 , for the Ru(NH₃)₄(bpy)^{3+/2+} exchange; 8.4×10^7 , 0.1 M HClO_4 , for the Ru(NH₃)₂(bpy)^{2+/2+} exchange. The rate constants and activation parameters for the $Ru(NH_3)_4(bpy)^{3+/2+}$ exchange reaction were determined as a function of ionic strength ($k = 4.1 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$, $\Delta H^{\ddagger} = 4.0 \text{ kcal mol}^{-1}$, and $\Delta S^{\ddagger} = -24 \text{ cal deg}^{-1} \text{ mol}^{-1}$ at zero ionic strength and 25 °C). The rate constants determined in this work together with those for the analogous $Ru(NH_3)_5py^{3+/2+}$ and $Ru(bpy)_3^{3+/2+}$ exchange reactions are compared with the predictions of theoretical models. Good linearity was found for a plot of log kex vs. $1/\bar{r}$, where \bar{r} is the mean separation of the ruthenium centers in the activated complex. The Marcus model derived on the basis of a reactive collision formulation gives better agreement with the observed rate constants and activation parameters at zero ionic strength than the conventional ion-pair preequilibrium model. Contrary to prediction, the increase in exchange rate with increasing ionic strength is reflected primarily in a decreased enthalpy of activation.

Introduction

Outer-sphere electron exchange reactions constitute the simplest class of electron transfer reactions.¹ The rates and activation energetics of such reactions are therefore of considerable interest. The currently accepted model for bimolecular electron exchange between $M^{(III)}L_6^{3+}$ and $M^{(II)}L_6^{2+}$ involves the reaction sequence²

$$M^{(III)}L_6^{3+} + M^{(II)}L_6^{2+} \stackrel{k_1}{\underset{k_{-1}}{\longleftarrow}} [M^{(III)}L_6|M^{(II)}L_6]^{5+}$$
(1)

$$[M^{(III)}L_6|M^{(II)}L_6]^{5+} \xrightarrow{k_{et}} [M^{(II)}L_6|M^{(III)}L_6]^{5+}$$
(2)

$$[M^{(\rm II)}L_6]M^{(\rm III)}L_6]^{5+} \rightarrow M^{(\rm II)}L_6^{2+} + M^{(\rm III)}L_6^{3+} \quad (3)$$

In this scheme the reactants first form a precursor complex (eq 1). The electron transfer takes place within this complex to form a successor complex (eq 2). Dissociation of the successor complex yields the observed electron transfer products (eq 3). In this paper we treat the case in which precursor complex formation is a rapidly established preequilibrium with the subsequent electron transfer within this complex being rate determining $(k_{-1} \gg k_{et})$. Under these conditions the observed second-order rate constant is equal to $K_0 k_{et}$ where $K_0 =$ k_1/k_{-1} . We will also assume that the electron transfer is adiabatic, that is, that the interaction between the reactants is large enough for the electron transfer to occur with unit probability in the activated complex. In other words, we assume for the time being that the probability factor $\langle \kappa \rangle$ in the expression

$$k_{\rm et} = \langle \kappa \rangle \frac{k_{\rm B}T}{h} \exp[-\Delta G_{\lambda}^{\pm}/RT]$$

is equal to unity. Under these circumstances the Franck-Condon barrier to electron transfer should account for ΔG_{λ}^{\pm} . For a M(II)/M(III) exchange reaction, the Franck-Condon barrier arises because the metal-ligand bond lengths must rearrange to some common value intermediate between that characteristic for the metal ion in oxidation states II and III before electron transfer can occur. Likewise, the solvent polarization around the reactants, which is sensitive to the charge of the reactant, must rearrange prior to electron transfer. These rearrangements are required to satisfy conservation of energy.^{1,3–10} Therefore if the equilibrium constants for precursor complex formation (k_1/k_{-1}) and the Franck-Condon rearrangement barriers are known, the rate constants for electron-exchange reactions can be calculated.

In this paper the exchange rate constants of the Ru(III)/ Ru(II) redox couple in a series of ruthenium ammine complexes are compared with the predictions of various models. The exchange rate constants for the ruthenium complexes were